ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
X-energy raises $700M in latest funding round
Advanced reactor developer X-energy has announced that it has closed an oversubscribed Series D financing round of approximately $700 million. The funding proceeds are expected to be used to help continue the expansion of its supply chain and the commercial pipeline for its Xe-100 advanced small modular reactor and TRISO-X fuel, according the company.
W. D. Fletcher, M. J. Bell, R. T. Marchese, J. L. Gallagher
Nuclear Technology | Volume 10 | Number 4 | April 1971 | Pages 420-427
Technical Paper | Symposium on Reactor Containment Spray System Technology / Reactor | doi.org/10.13182/NT71-A16251
Articles are hosted by Taylor and Francis Online.
The production of hydrogen due to the radiolysis of reactor containment spray solutions has been investigated. An experimental program was conducted to determine the extent of radiolytic hydrogen production in a laboratory system modeled after the nuclear plant systems. Radiolysis of the solution, as it would occur in the containment sump and in the reactor core, was studied. Experimental results indicate a conservative rate of hydrogen production due to sump solution radiolysis of 0.30 molecules/100 eV of energy absorbed by the solution. Experimental studies of core solution radiolysis have shown the extent of hydrogen production from this source is limited by the attainment of a steady-state hydrogen concentration in the solution passing through the core. Based on experimental data, an analytic model was derived which conservatively approximates the hydrogen production process as it would occur in the nuclear plant should a hypothetical design basis accident (DBA) occur. The significance of other sources of hydrogen in the post-accident environment is discussed also.