ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
DOE fast tracks test reactor projects: What to know
The Department of Energy today unveiled 10 companies racing to bring test reactors online by next year to meet Trump's deadline of next Independance Day, leveraging a new DOE pathway that allows reactor authorization outside national labs. As first outlined in one of the four executive orders on nuclear energy released by President Trump on May 23 and in the request for applications for the Reactor Pilot Program released June 18, the companies must use their own money and sites—and DOE authorization—to get reactors operating. What they won’t need is a Nuclear Regulatory Commission license.
W. D. Fletcher, M. J. Bell, R. T. Marchese, J. L. Gallagher
Nuclear Technology | Volume 10 | Number 4 | April 1971 | Pages 420-427
Technical Paper | Symposium on Reactor Containment Spray System Technology / Reactor | doi.org/10.13182/NT71-A16251
Articles are hosted by Taylor and Francis Online.
The production of hydrogen due to the radiolysis of reactor containment spray solutions has been investigated. An experimental program was conducted to determine the extent of radiolytic hydrogen production in a laboratory system modeled after the nuclear plant systems. Radiolysis of the solution, as it would occur in the containment sump and in the reactor core, was studied. Experimental results indicate a conservative rate of hydrogen production due to sump solution radiolysis of 0.30 molecules/100 eV of energy absorbed by the solution. Experimental studies of core solution radiolysis have shown the extent of hydrogen production from this source is limited by the attainment of a steady-state hydrogen concentration in the solution passing through the core. Based on experimental data, an analytic model was derived which conservatively approximates the hydrogen production process as it would occur in the nuclear plant should a hypothetical design basis accident (DBA) occur. The significance of other sources of hydrogen in the post-accident environment is discussed also.