ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
W. D. Fletcher, M. J. Bell, R. T. Marchese, J. L. Gallagher
Nuclear Technology | Volume 10 | Number 4 | April 1971 | Pages 420-427
Technical Paper | Symposium on Reactor Containment Spray System Technology / Reactor | doi.org/10.13182/NT71-A16251
Articles are hosted by Taylor and Francis Online.
The production of hydrogen due to the radiolysis of reactor containment spray solutions has been investigated. An experimental program was conducted to determine the extent of radiolytic hydrogen production in a laboratory system modeled after the nuclear plant systems. Radiolysis of the solution, as it would occur in the containment sump and in the reactor core, was studied. Experimental results indicate a conservative rate of hydrogen production due to sump solution radiolysis of 0.30 molecules/100 eV of energy absorbed by the solution. Experimental studies of core solution radiolysis have shown the extent of hydrogen production from this source is limited by the attainment of a steady-state hydrogen concentration in the solution passing through the core. Based on experimental data, an analytic model was derived which conservatively approximates the hydrogen production process as it would occur in the nuclear plant should a hypothetical design basis accident (DBA) occur. The significance of other sources of hydrogen in the post-accident environment is discussed also.