ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Education and training to support Canadian nuclear workforce development
Along with several other nations, Canada has committed to net-zero emissions by 2050. Part of this plan is tripling nuclear generating capacity. As of 2025, the country has four operating nuclear generating stations with a total of 17 reactors, 16 of which are in the province of Ontario. The Independent Electricity System Operator has recommended that an additional 17,800 MWe of nuclear power be added to Ontario’s grid.
Keith E. Holbert, Belle R. Upadhyaya
Nuclear Technology | Volume 92 | Number 3 | December 1990 | Pages 411-427
Technical Paper | Instrumentation and Control | doi.org/10.13182/NT90-A16242
Articles are hosted by Taylor and Francis Online.
The optimal control and safe operation of a nuclear power plant requires reliable information concerning the state of the process. Signal validation is the detection, isolation, and characterization of faulty signals. Properly validated process signals can provide increased plant availability and reliability of operator actions. A comprehensive signal validation software system has been developed for application to nuclear power plants. This system combines some previously established fault detection methodologies as well as some newly developed modules. The techniques have been implemented in a modular architecture that allows for the addition or removal of signal validation “modules” as deemed necessary. Intramodule confidence factors describing the validity of a given signal are derived using fuzzy membership functions. A final evaluation of signal status is made by the system executive based on results from each signal validation module. To make reliable decisions in this parallel system, a positive decision maker was developed. The hypercube signal validation methodology and the comprehensive system were tested using operational data from both a commercial pressurized water reactor and the Experimental Breeder Reactor II.