ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
INL’s new innovation incubator could link start-ups with an industry sponsor
Idaho National Laboratory is looking for a sponsor to invest $5 million–$10 million in a privately funded innovation incubator to support seed-stage start-ups working in nuclear energy, integrated energy systems, cybersecurity, or advanced materials. For their investment, the sponsor gets access to what INL calls “a turnkey source of cutting-edge American innovation.” Not only are technologies supported by the program “substantially de-risked” by going through technical review and development at a national laboratory, but the arrangement “adds credibility, goodwill, and visibility to the private sector sponsor’s investments,” according to INL.
Yin-Pang Ma, Nien-Mien Chung, Bau-Shei Pei, Wei-Keng Lin, Yih-Yun Hsu
Nuclear Technology | Volume 94 | Number 1 | April 1991 | Pages 124-133
Technical Paper | Heat Transfer and Fluid Flow | doi.org/10.13182/NT91-A16228
Articles are hosted by Taylor and Francis Online.
The void fraction is one of the most important quantities in experimental studies of two-phase flow. Two simple and economical techniques to determine this quantity are developed and discussed. The improved impedance method, in which a high-frequency processing circuit is developed to measure and amplify the voltage changes between the electrodes, is the first method. The differential pressure (D/P) method, in which a commercial differential pressure transmitter is used to determine the static pressure of two-phase flow, is the second method. Experiments including tests in vertical and horizontal pipes for the impedance method and a vertical pipe test for the D/P method have been performed. Furthermore, theoretical models of these two techniques are developed. The test results show that most of the measured void fractions are within a 20% error band compared with the actual void fraction.