ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
October 2025
Fusion Science and Technology
Latest News
OECD NEA meeting focuses on irradiation experiments
Members of the OECD Nuclear Energy Agency’s Second Framework for Irradiation Experiments (FIDES-II) joint undertaking gathered from September 29 to October 3 in Ketchum, Idaho, for the technical advisory group and governing board meetings hosted by Idaho National Laboratory. The FIDES-II Framework aims to ensure and foster competences in experimental nuclear fuel and structural materials in-reactor experiments through a diverse set of Joint Experimental Programs (JEEPs).
John C. Walton
Nuclear Technology | Volume 94 | Number 1 | April 1991 | Pages 114-123
Technical Paper | Radioactive Waste Management | doi.org/10.13182/NT91-A16227
Articles are hosted by Taylor and Francis Online.
Disposal of nuclear waste by deep underground burial is being considered by the United States and many other countries. In many cases, the waste will be encased in an engineered waste package made of metal, concrete, or other materials. The ability of these disposal systems to limit the migration of radionuclides depends on a variety of factors, including the geochemical environment. If the waste package contains metallic parts, the corrosion reactions will dominate many aspects of the geochemistry in the immediate vicinity of a nuclear waste package. Some potential influences of metallic corrosion on the geochemical environment of the waste package are discussed. The corrosion reactions are a result of interaction or coupling of corrosion and geochemical processes. A generalized model is presented that describes the electrochemistry developed in corrosion cells and interaction with the surrounding geochemical environment. The model is first applied to laboratory data on crevice corrosion and then used to perform a parametric study. The results suggest that corrosion cells that lead to significant modifications to the geochemical environment are likely. The formation of corrosion cells around the waste package leads to large uncertainties concerning the geochemical environment in which radionuclide release rate and container corrosion will take place. Models and experiments of corrosion, waste form dissolution, and release rate need to take the expected uncertainty in geochemical environment into account.