ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
John C. Walton
Nuclear Technology | Volume 94 | Number 1 | April 1991 | Pages 114-123
Technical Paper | Radioactive Waste Management | doi.org/10.13182/NT91-A16227
Articles are hosted by Taylor and Francis Online.
Disposal of nuclear waste by deep underground burial is being considered by the United States and many other countries. In many cases, the waste will be encased in an engineered waste package made of metal, concrete, or other materials. The ability of these disposal systems to limit the migration of radionuclides depends on a variety of factors, including the geochemical environment. If the waste package contains metallic parts, the corrosion reactions will dominate many aspects of the geochemistry in the immediate vicinity of a nuclear waste package. Some potential influences of metallic corrosion on the geochemical environment of the waste package are discussed. The corrosion reactions are a result of interaction or coupling of corrosion and geochemical processes. A generalized model is presented that describes the electrochemistry developed in corrosion cells and interaction with the surrounding geochemical environment. The model is first applied to laboratory data on crevice corrosion and then used to perform a parametric study. The results suggest that corrosion cells that lead to significant modifications to the geochemical environment are likely. The formation of corrosion cells around the waste package leads to large uncertainties concerning the geochemical environment in which radionuclide release rate and container corrosion will take place. Models and experiments of corrosion, waste form dissolution, and release rate need to take the expected uncertainty in geochemical environment into account.