ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Education and training to support Canadian nuclear workforce development
Along with several other nations, Canada has committed to net-zero emissions by 2050. Part of this plan is tripling nuclear generating capacity. As of 2025, the country has four operating nuclear generating stations with a total of 17 reactors, 16 of which are in the province of Ontario. The Independent Electricity System Operator has recommended that an additional 17,800 MWe of nuclear power be added to Ontario’s grid.
Constantine P. Tzanos, Jack H. Tessier, Dean R. Pedersen
Nuclear Technology | Volume 94 | Number 1 | April 1991 | Pages 68-79
Technical Paper | Nuclear Reactor Safety | doi.org/10.13182/NT91-A16222
Articles are hosted by Taylor and Francis Online.
The effects of design parameters on the performance of the reactor vessel auxiliary cooling system (RVACS) of a pool liquid-metal reactor (LMR) are investigated. These parameters include (a) stack height, (b) size of the airflow gap, (c) system pressure loss, (d) fins on the guard vessel or the baffle wall, and (e) repeated ribs on the airflow channel walls. As a measure of performance, the peak sodium pool temperature during the transient following a reactor scram from full power was used. Horizontal ribs with a 0.003-m height and a 0.015-m pitch gave the best performance, i.e., the lowest peak sodium pool temperature during the scram transient. For a 3500-MW(thermal) LMR, they gave peak hot pool and peak cladding temperatures that were 52°C lower than those obtained with a reference RVACS having smooth airflow channel walls.