ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
INL’s new innovation incubator could link start-ups with an industry sponsor
Idaho National Laboratory is looking for a sponsor to invest $5 million–$10 million in a privately funded innovation incubator to support seed-stage start-ups working in nuclear energy, integrated energy systems, cybersecurity, or advanced materials. For their investment, the sponsor gets access to what INL calls “a turnkey source of cutting-edge American innovation.” Not only are technologies supported by the program “substantially de-risked” by going through technical review and development at a national laboratory, but the arrangement “adds credibility, goodwill, and visibility to the private sector sponsor’s investments,” according to INL.
Rainer Moormann, Klaus Hilpert
Nuclear Technology | Volume 94 | Number 1 | April 1991 | Pages 56-67
Technical Paper | Nuclear Reactor Safety | doi.org/10.13182/NT91-A16221
Articles are hosted by Taylor and Francis Online.
An overview of high-temperature gas-cooled reactor (HTR) fission product chemistry and its influence on source terms in core heatup accidents is given. These accidents are risk-dominating for medium-sized HTRs and are characterized by maximum core temperatures of ∼2500°C (2773 K) and a late-starting, slowly proceeding fission product release from the fuel particles. In these accidents, the number of chemical reactions in the core and primary circuit is limited by the low oxygen potential and preferential release of metal from the fuel. The graphite in the core acts as a very powerful barrier to metallic fission products because of its chemisorption action. Cesium iodide (CsI) formation can reduce this sorptive retention for cesium when there is a high cesium burden on the graphite. This is not necessarily expected for small HTRs, which have much lower maximum accident temperatures (1600° C = 1873 K) and a much lower fractional release of fission products from coated particles. In the primary circuit, less efficient chemisorption of fission products on metals occurs. The fission product chemistry in the HTR reactor building is similar to that for other reactor types. Conservatisms in handling fission product chemistry in HTR safety analyses are identified. This leads to the conclusion that, especially for metallic fission products, a significant potential for reduction of the actual core heatup source terms exists. In modern medium-sized HTRs, these source terms are of the order of <1% of the core inventory for cesium, iodine, and noble gases and <0.1% for strontium. For small HTRs, these source terms remain several orders of magnitude smaller.