ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
ANS designates Armour Research Foundation Reactor as Nuclear Historic Landmark
The American Nuclear Society presented the Illinois Institute of Technology with a plaque last week to officially designate the Armour Research Foundation Reactor a Nuclear Historic Landmark, following the Society’s decision to confer the status onto the reactor in September 2024.
Tatsuhiko Uda, Hajime Iba, Hiroyuki Tsuchiya
Nuclear Technology | Volume 73 | Number 1 | April 1986 | Pages 109-115
Technical Paper | Material | doi.org/10.13182/NT86-A16207
Articles are hosted by Taylor and Francis Online.
Melt refining as a means of uranium decontamination of metallic wastes was examined. Samples of mild steel, contaminated with uranium, were melted by adding SiO2-CaO-Al2O3 ternary system fluxes. Various melting temperatures and times were used, and the uranium concentrations in the resulting ingots were determined. Flux, and hence slag, composition was found to influence the level of decontamination, but melting temperature and time had little effect. Using the most effective flux composition (10 SiO2-50 CaO-40 Al2O3), uranium concentration was lowered from a contamination level of 500 to 0.027 ppm, a value nearly that of the initial steel before contamination. When the ionic character of slag was defined using basicity [the mole ratio of basic oxide (CaO) to acidic oxide (SiO2 + Al2O3)], the optimum decontamination value was found near a basicity of 1.6. The slag anions of silicate or aluminate seemed to affect the uranium decontamination.