ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
Supreme Court rules against Texas in interim storage case
The Supreme Court voted 6–3 against Texas and a group of landowners today in a case involving the Nuclear Regulatory Commission’s licensing of a consolidated interim storage facility for spent nuclear fuel, reversing a decision by the 5th Circuit Court of Appeals to grant the state and landowners Fasken Land and Minerals (Fasken) standing to challenge the license.
Tatsuhiko Uda, Hajime Iba, Hiroyuki Tsuchiya
Nuclear Technology | Volume 73 | Number 1 | April 1986 | Pages 109-115
Technical Paper | Material | doi.org/10.13182/NT86-A16207
Articles are hosted by Taylor and Francis Online.
Melt refining as a means of uranium decontamination of metallic wastes was examined. Samples of mild steel, contaminated with uranium, were melted by adding SiO2-CaO-Al2O3 ternary system fluxes. Various melting temperatures and times were used, and the uranium concentrations in the resulting ingots were determined. Flux, and hence slag, composition was found to influence the level of decontamination, but melting temperature and time had little effect. Using the most effective flux composition (10 SiO2-50 CaO-40 Al2O3), uranium concentration was lowered from a contamination level of 500 to 0.027 ppm, a value nearly that of the initial steel before contamination. When the ionic character of slag was defined using basicity [the mole ratio of basic oxide (CaO) to acidic oxide (SiO2 + Al2O3)], the optimum decontamination value was found near a basicity of 1.6. The slag anions of silicate or aluminate seemed to affect the uranium decontamination.