ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
X-energy raises $700M in latest funding round
Advanced reactor developer X-energy has announced that it has closed an oversubscribed Series D financing round of approximately $700 million. The funding proceeds are expected to be used to help continue the expansion of its supply chain and the commercial pipeline for its Xe-100 advanced small modular reactor and TRISO-X fuel, according the company.
W. J. Mills, Bernard Mastel
Nuclear Technology | Volume 73 | Number 1 | April 1986 | Pages 102-108
Technical Paper | Material | doi.org/10.13182/NT86-A16206
Articles are hosted by Taylor and Francis Online.
Fast neutron irradiation to total fluences ranging from 7.7 × 1021 to 5.7 × 1022 n/cm2 (3 to 16 dpa) resulted in a 65% increase in yield strength and a fourfold reduction in ductility. Intergranular fracture was the dominant failure mode for the irradiated material, whereas equal amounts of intergranular and trans-granular cracking were found in the unirradiated condition. This fracture mechanism transition resulted from intense heterogeneous deformation in a matrix strengthened by an irradiation-produced dislocation substructure. Planar slip bands impinged on the grain boundaries causing very high local stresses. Intergranular cracking resulted because the hardened matrix prevented relaxation of the stress concentrations.