ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
October 2025
Fusion Science and Technology
Latest News
OECD NEA meeting focuses on irradiation experiments
Members of the OECD Nuclear Energy Agency’s Second Framework for Irradiation Experiments (FIDES-II) joint undertaking gathered from September 29 to October 3 in Ketchum, Idaho, for the technical advisory group and governing board meetings hosted by Idaho National Laboratory. The FIDES-II Framework aims to ensure and foster competences in experimental nuclear fuel and structural materials in-reactor experiments through a diverse set of Joint Experimental Programs (JEEPs).
W. J. Mills, Bernard Mastel
Nuclear Technology | Volume 73 | Number 1 | April 1986 | Pages 102-108
Technical Paper | Material | doi.org/10.13182/NT86-A16206
Articles are hosted by Taylor and Francis Online.
Fast neutron irradiation to total fluences ranging from 7.7 × 1021 to 5.7 × 1022 n/cm2 (3 to 16 dpa) resulted in a 65% increase in yield strength and a fourfold reduction in ductility. Intergranular fracture was the dominant failure mode for the irradiated material, whereas equal amounts of intergranular and trans-granular cracking were found in the unirradiated condition. This fracture mechanism transition resulted from intense heterogeneous deformation in a matrix strengthened by an irradiation-produced dislocation substructure. Planar slip bands impinged on the grain boundaries causing very high local stresses. Intergranular cracking resulted because the hardened matrix prevented relaxation of the stress concentrations.