ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Mirion announces appointments
Mirion Technologies has announced three senior leadership appointments designed to support its global nuclear and medical businesses while advancing a company-wide digital and AI strategy. The leadership changes come as Mirion seeks to advance innovation and maintain strong performance in nuclear energy, radiation safety, and medical applications.
W. J. Mills, Bernard Mastel
Nuclear Technology | Volume 73 | Number 1 | April 1986 | Pages 102-108
Technical Paper | Material | doi.org/10.13182/NT86-A16206
Articles are hosted by Taylor and Francis Online.
Fast neutron irradiation to total fluences ranging from 7.7 × 1021 to 5.7 × 1022 n/cm2 (3 to 16 dpa) resulted in a 65% increase in yield strength and a fourfold reduction in ductility. Intergranular fracture was the dominant failure mode for the irradiated material, whereas equal amounts of intergranular and trans-granular cracking were found in the unirradiated condition. This fracture mechanism transition resulted from intense heterogeneous deformation in a matrix strengthened by an irradiation-produced dislocation substructure. Planar slip bands impinged on the grain boundaries causing very high local stresses. Intergranular cracking resulted because the hardened matrix prevented relaxation of the stress concentrations.