ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
ANS designates Armour Research Foundation Reactor as Nuclear Historic Landmark
The American Nuclear Society presented the Illinois Institute of Technology with a plaque last week to officially designate the Armour Research Foundation Reactor a Nuclear Historic Landmark, following the Society’s decision to confer the status onto the reactor in September 2024.
Victor R. Deitz
Nuclear Technology | Volume 73 | Number 1 | April 1986 | Pages 96-101
Technical Paper | Radioactive Waste Management | doi.org/10.13182/NT86-A16205
Articles are hosted by Taylor and Francis Online.
The penetration of radioactive CH3131I through adsorbent carbon was studied in air flow systems as a function of bed depth. The count profile in equal increments of depth was found to be exponential with depth along the line of flow for the air-vapor mixtures. The slopes (lognormal count versus depth) were determined for a number of weathered and used carbons as well as for new materials. A large numerical magnitude of the slope is characteristic of new and good carbons; a low value signifies poor retention by the test column. The profile measurements correlate with the percent of penetration. The residual depth profile can serve as an index for the need to replace or to regenerate the carbon bed.