ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Robert A. Fjeld, Robert Jennings Heinsohn, Samuel H. Levine
Nuclear Technology | Volume 43 | Number 1 | April 1979 | Pages 109-118
Technical Paper | Radioisotope | doi.org/10.13182/NT79-A16179
Articles are hosted by Taylor and Francis Online.
A theoretical and experimental study of an aerosol particle charging apparatus that utilizes a 407-MBq (11-mCi) 90Sr-90Y beta source and electric and magnetic fields has been performed. Fluid models of electron trajectories in the presence of the magnetic field, ion generation due to electron energy deposition, and particle charge acquisition due to ion transport are developed and applied to the experimental apparatus. Calculated average axial ion generation rates on the order of 1014/m3· s are confirmed by experimental measurements, and calculated radial profiles are in good agreement with experiments. Calculated and experimental charging rates agree within 30% for 50- to 100-μm-diam glass spheres in an electric field of 100 kV/m and a magnetic field of 0.141 T. It is found that both the magnitude and spatial distribution of the ion generation rate play important roles in determining the rate of charge acquisition by an aerosol particle in a partially ionized gas subjected to an external electric field.