ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
X-energy raises $700M in latest funding round
Advanced reactor developer X-energy has announced that it has closed an oversubscribed Series D financing round of approximately $700 million. The funding proceeds are expected to be used to help continue the expansion of its supply chain and the commercial pipeline for its Xe-100 advanced small modular reactor and TRISO-X fuel, according the company.
Robert A. Fjeld, Robert Jennings Heinsohn, Samuel H. Levine
Nuclear Technology | Volume 43 | Number 1 | April 1979 | Pages 109-118
Technical Paper | Radioisotope | doi.org/10.13182/NT79-A16179
Articles are hosted by Taylor and Francis Online.
A theoretical and experimental study of an aerosol particle charging apparatus that utilizes a 407-MBq (11-mCi) 90Sr-90Y beta source and electric and magnetic fields has been performed. Fluid models of electron trajectories in the presence of the magnetic field, ion generation due to electron energy deposition, and particle charge acquisition due to ion transport are developed and applied to the experimental apparatus. Calculated average axial ion generation rates on the order of 1014/m3· s are confirmed by experimental measurements, and calculated radial profiles are in good agreement with experiments. Calculated and experimental charging rates agree within 30% for 50- to 100-μm-diam glass spheres in an electric field of 100 kV/m and a magnetic field of 0.141 T. It is found that both the magnitude and spatial distribution of the ion generation rate play important roles in determining the rate of charge acquisition by an aerosol particle in a partially ionized gas subjected to an external electric field.