ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Helmut Elbel, José LóPez Jiménez
Nuclear Technology | Volume 43 | Number 1 | April 1979 | Pages 88-99
Technical Paper | Fuel | doi.org/10.13182/NT79-A16177
Articles are hosted by Taylor and Francis Online.
The heat transfer coefficient of the interface between the fuel and the cladding of fast reactor fuel rods with different burnups was derived through the analysis of the structure of the UO2-PUO2 fuel A decrease of the heat transfer with increasing burn-up was found, resulting in rising fuel surface temperatures. The predictions of a theoretical heat transfer model agreed well with the experimental result. The deterioration of the heat transfer could be explained by fission gas release into the residual gap between fuel and cladding. Heat transfer through contact spots played a negligible role due to low contact pressure and very early formation of an oxide layer on the cladding.