ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
D. A. Orth
Nuclear Technology | Volume 43 | Number 1 | April 1979 | Pages 63-74
Techinical paper | Chemical processing | doi.org/10.13182/NT79-A16175
Articles are hosted by Taylor and Francis Online.
Some experience in 233U-Th processing is available from past operations at government sites and may be of interest to the current reevaluation of thorium fuel cycles. In five separate campaigns between 1964 and 1970, the Savannah River Plant processed ∼240 tons (MT) of thorium, irradiated as aluminum-clad metal and oxide and recovered ∼580 kg of total uranium. Satisfactory processing routes were devised for a solvent extraction plant that normally processes enriched uranium and previously was a Purex plant. In the initial campaigns, a dilute tributyl phosphate (TBP) flowsheet recovered only uranium, and thorium was sent to waste. In later campaigns, a modified Thorex solvent extraction flowsheet recovered both uranium and thorium. Satisfactory processing required specific attention to the slow dissolving rate of ThO2, the presence of highly radioactive 233Pa, solvent extraction flowsheet constraints to avoid formation of two organic phases in the thorium-TBP systems, the ingrowth of gamma-emitting daughters of 232U, and 233U criticality.