ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
K. H. Sun, R. B. Duffey
Nuclear Technology | Volume 43 | Number 1 | April 1979 | Pages 21-27
Technical Paper | Reactor | doi.org/10.13182/NT79-A16171
Articles are hosted by Taylor and Francis Online.
A simple generalized model has been developed to predict the rate of mass effluence during bottom reflooding, which is an emergency core cooling mechanism for the light water reactors. The effluence of mass during reflooding is important not only for determining the core heat transfer rate, but also the overall system pressure drop characteristics. The model accounts for the propagation of the quench front and vaporization below the quench front. It treats the quench front explicitly as a reference for mass and energy balance considerations. Comparisons were made between the model predictions and full-length bundle data with two power profiles and basic single-tube data. The results demonstrate that the rate of mass effluence is strongly coupled to the rate of quench front propagation in the core.