ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Mirion announces appointments
Mirion Technologies has announced three senior leadership appointments designed to support its global nuclear and medical businesses while advancing a company-wide digital and AI strategy. The leadership changes come as Mirion seeks to advance innovation and maintain strong performance in nuclear energy, radiation safety, and medical applications.
K. H. Sun, R. B. Duffey
Nuclear Technology | Volume 43 | Number 1 | April 1979 | Pages 21-27
Technical Paper | Reactor | doi.org/10.13182/NT79-A16171
Articles are hosted by Taylor and Francis Online.
A simple generalized model has been developed to predict the rate of mass effluence during bottom reflooding, which is an emergency core cooling mechanism for the light water reactors. The effluence of mass during reflooding is important not only for determining the core heat transfer rate, but also the overall system pressure drop characteristics. The model accounts for the propagation of the quench front and vaporization below the quench front. It treats the quench front explicitly as a reference for mass and energy balance considerations. Comparisons were made between the model predictions and full-length bundle data with two power profiles and basic single-tube data. The results demonstrate that the rate of mass effluence is strongly coupled to the rate of quench front propagation in the core.