ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
October 2025
Fusion Science and Technology
Latest News
OECD NEA meeting focuses on irradiation experiments
Members of the OECD Nuclear Energy Agency’s Second Framework for Irradiation Experiments (FIDES-II) joint undertaking gathered from September 29 to October 3 in Ketchum, Idaho, for the technical advisory group and governing board meetings hosted by Idaho National Laboratory. The FIDES-II Framework aims to ensure and foster competences in experimental nuclear fuel and structural materials in-reactor experiments through a diverse set of Joint Experimental Programs (JEEPs).
M. Taube
Nuclear Technology | Volume 38 | Number 1 | April 1978 | Pages 62-68
Technical Paper | Low-Temperature Nuclear Heat / Reactor | doi.org/10.13182/NT78-A16156
Articles are hosted by Taylor and Francis Online.
A system of two-component chemical agents is proposed for transforming heat with T ≈450 ± 50 K into chemical energy, as a means of storage and transportation, in the following manner:salt (soiid) + ammonia-derivate(vol)⇄ salt-amminate(sol) + ΔH specific enthalpy:ΔH ≅ 1.0 ÷ 1.3 MJ/kg of salt-amminate.The system is called SALAMO (for Salt/Ammonia), and the following boundary conditions have been arbitrarily chosen: 1. The primary source of heat is a light water reactor (LWR), with temperatures of Tmax = 530 K and Toptim = 400 ±20 K. 2. The heat energy bounded in chemical form is transported in railway wagons, in pressureless containers, at a near-ambient temperature. 3. Heat is delivered to the consumers at a temperature of 390 ± 10 K, with a power on the coldest days of at least 1 MW. This corresponds to a district having a population of several hundreds. The distance from the LWR can be as much as 100 km, although the optimum distance is 30 to 50 km. Heat can be stored for only short periods. Averaged over the whole year, the system provides 85 to 90% of the total space heating requirements, the remainder being covered by oil heating during the very coldest periods. 4. The LWRs supply the heat during their electrical off-peak periods, also during the winter. 5. Allowances are made for inherent redundancy. 6. The electrical energy for transportation over a distance of 100 km is not more than 2% of the total energy transported.