ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Brian F. Ives, Harry T. Cullinan, Jr., John Y. Yang
Nuclear Technology | Volume 18 | Number 1 | April 1973 | Pages 29-45
Technical Paper | Radiation | doi.org/10.13182/NT73-A16105
Articles are hosted by Taylor and Francis Online.
A theoretical and experimental investigation of a radioactive fluidized bed chemical reactor is described. The fluidized particles are composed of radio-strontium silicate. The chemical system is the conversion of toluene to benzotrichloride. Experimental work defines the variables affecting bed porosity versus throughput at high bed expansions where significant radiation deposition could be achieved. Homogeneous fluidization is achieved by developing a classification technique to obtain a batch of radioactive microspheres with a narrow size and density distribution. Experimental data obtained with a semi-batch reactor using beta rays from a Van de Graaff generator lead to the conclusion that the reaction proceeds according to -order kinetics. The axial-dispersed plug flow model for three consecutive reactions and -order kinetics results in four simultaneous nonlinear second-order ordinary differential equations. These equations with the appropriate boundary conditions are solved numerically using a finite difference technique. An economically optimum reactor design utilizing recycle is presented for the last part of the plant.