ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Mirion announces appointments
Mirion Technologies has announced three senior leadership appointments designed to support its global nuclear and medical businesses while advancing a company-wide digital and AI strategy. The leadership changes come as Mirion seeks to advance innovation and maintain strong performance in nuclear energy, radiation safety, and medical applications.
Yasuo Koizumi, Hiroshige Kumamaru, Yutaka Kukita, Masahiro Kawaji, Masahiro Osakabe, Richard R. Schultz,* Mitsugu Tanaka, Kanji Tasaka
Nuclear Technology | Volume 73 | Number 3 | June 1986 | Pages 306-319
Technical Paper | Nuclear Safety | doi.org/10.13182/NT86-A16074
Articles are hosted by Taylor and Francis Online.
The large-scale test facility (LSTF) of the Rig of Safety Assessment No. 4 (ROSA-IV) program is a volumetrically scaled pressurized water reactor (PWR) system with an electrically heated core used for integral simulation of small break loss-of-coolant accidents (LOCAs) and operational transients. The 0.1% very small cold-leg break experiment was conducted as the first integral experiment at the LSTF. The test provided a good opportunity to truly assess the state-of-the-art predictability of the safety analysis code RELAP5/MOD1 CY18 through a blind-blind prediction of the experiment since there was no prior experience in analyzing the experimental data with the code; furthermore, detailed operational characteristics of LSTF were not yet known. The LOCA transient was mitigated by high-pressure charging pump injection to the primary system and bleed and feed operation of the secondary system. The simulated reactor system was safely placed in hot standby condition by engineered safety features similar to those on a PWR. Natural circulation flow was established to effectively remove the decay heat generated in the core. No cladding surface temperature excursion was observed. The RELAP5 code showed good capability to predict thermal-hydraulic phenomena during the very small break LOCA transient. Although all the information needed for the analysis by the RELAP5 code was obtained solely from the engineering drawings for fabrication and the operational specifications, the code predicted key phenomena satisfactorily.