ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
NC State, SRNS partner to attract young talent
North Carolina State University and Savannah River Nuclear Solutions (SRNS) have joined forces to address the ongoing need for specialists in nuclear and criticality safety engineering (N&CSE) at the Department of Energy’s Savannah River Site, near Aiken, S.C.
Archie A. Harms, Greg Cripps
Nuclear Technology | Volume 81 | Number 3 | June 1988 | Pages 429-434
Technical Paper | Radioisotopes and Isotope Separation | doi.org/10.13182/NT88-A16064
Articles are hosted by Taylor and Francis Online.
A combination fission-radioisotope compact power system involving the synergetic interaction of 251Cf and 252Cf is considered. Based on a nonlinear point kinetics formulation of the coupled reactions combined with the parametric incorporation of design and operational variables, it is shown that a stable autonomous power mode is readily attainable. This system appears particularly suitable for very long-life unattended operation for space and terrestrial applications.