ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Industry Update—May 2025
Here is a recap of industry happenings from the recent past:
TerraPower’s Natrium reactor advances on several fronts
TerraPower has continued making aggressive progress in several areas for its under-construction Natrium Reactor Demonstration Project since the beginning of the year. Natrium is an advanced 345-MWe reactor that has liquid sodium as a coolant, improved fuel utilization, enhanced safety features, and an integrated energy storage system, allowing for a brief power output boost to 500-MWe if needed for grid resiliency. The company broke ground for its first Natrium plant in 2024 near a retiring coal plant in Kemmerer, Wyo.
August W. Cronenberg, Daniel J. Osetek
Nuclear Technology | Volume 81 | Number 3 | June 1988 | Pages 347-359
Technical Paper | Nuclear Safety | doi.org/10.13182/NT88-A16056
Articles are hosted by Taylor and Francis Online.
The chemical reaction kinetics of fission product iodine and cesium released from fuel to a steam/hydrogen atmosphere are investigated at conditions associated with severe core damage accidents. The results are used to assess the time to establish equilibrium and the ultimate chemical form of iodine and cesium as a function of gas mixture concentration and temperature conditions. Illustrative calculations are presented for interpretation of the chemical form of iodine and cesium during the Three Mile Island Unit 2 accident, as well as for recent severe fuel damage experiments. At low fission product concentrations (fission product/steam mole ratio < 10−8), the time to establish equilibrium may be on the order of tens of seconds, with the principal species being CsOH and HI. However, at fission product/steam mole ratios exceeding 10−5, the principal species are CsOH and Csl, with an equilibrium time of ∼10−4 s. Concentration conditions thus influence the ultimate chemical form of fission products in a steam/hydrogen gas mixture and the time to establish thermochemical equilibrium. Fission product concentration conditions should therefore be considered in the specification of the chemical form of iodine and cesium gas-phase transport for nuclear plant accident consequence analysis.