ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
CLEAN SMART bill reintroduced in Senate
Senators Ben Ray Luján (D., N.M.) and Tim Scott (R., S.C.) have reintroduced legislation aimed at leveraging the best available science and technology at U.S. national laboratories to support the cleanup of legacy nuclear waste.
The Combining Laboratory Expertise to Accelerate Novel Solutions for Minimizing Accumulated Radioactive Toxins (CLEAN SMART) Act, introduced on February 11, would authorize up to $58 million annually to develop, demonstrate, and deploy innovative technologies, targeting reduced costs and safer, faster remediation of sites from the Manhattan Project and Cold War.
Mojtaba Taherzadeh, Peter J. Gingo
Nuclear Technology | Volume 15 | Number 3 | September 1972 | Pages 396-410
Technical Paper | Fuel | doi.org/10.13182/NT72-A16037
Articles are hosted by Taylor and Francis Online.
The major sources of neutrons from plutonium dioxide nuclear fuel are considered in detail. These sources include spontaneous fission of several of the plutonium isotopes, (α,n) reactions with low Z impurities in the fuel, and (α,n) reactions with 180. For spontaneous fission neutrons a value of (1.95 ± 0.07) × 103 n/sec/g PuO2 is used. The neutron yield from (α,n) reactions with oxygen is calculated by integrating the reaction rate equation over all alpha-particle energies and all centerofmass angles. The results indicate a neutron emission rate of (1.14 ± 0.26) × 104 n/sec/g PuO2. The neutron yield from (α,n) reactions with low Z impurities in the fuel is presented in tabular form for 1 ppm of each impurity. The total neutron yield due to the combined effects of all the impurities depends on the fractional weight concentration of each impurity. The total neutron flux emitted from a particular fuel geometry is estimated by adding the neutron yield due to the induced fission to the other neutron sources.