ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Douglas R. Smith, Robert W. Albrecht
Nuclear Technology | Volume 79 | Number 1 | October 1987 | Pages 35-50
Technical Paper | Fission Reactor | doi.org/10.13182/NT87-A16003
Articles are hosted by Taylor and Francis Online.
A recent development in passive safety devices for advanced liquid-metal reactors is the installation of manometerlike core assemblies called gas enhancement modules (GEMs). Knowledge of the liquid sodium level within the GEMs is required to monitor GEM operation. A microwave, resonant cavity level measurement technique has been laboratory tested on a scale model of a GEM assembly in a nonsodium environment. The theory behind this method is discussed, and the experimental results are shown to compare well with those predicted by theoretical calculation. The resonant cavity level detector tracked extremely well over the desired 0.1524- to 1.1176-m range of operation and provided accurate, reproducible results well within the desired ±25.4-mm actual level. When tested for vibrational stability, level errors of only 0.254 mm were observed. The effects of material differences between the experimental GEM (copper) and the actual GEM (Type 304 stainless steel) are calculated. The actual GEM will have poorer resolution but still be within ±25.4-mm actual level. Temperature effects are also calculated and produce a 10.5 kHz/°C shift in resonant frequency, which could cause the indicated level to exceed the ±25.4 mm allowed if large (∼149°C) temperature changes occur.