ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
X-energy raises $700M in latest funding round
Advanced reactor developer X-energy has announced that it has closed an oversubscribed Series D financing round of approximately $700 million. The funding proceeds are expected to be used to help continue the expansion of its supply chain and the commercial pipeline for its Xe-100 advanced small modular reactor and TRISO-X fuel, according the company.
Douglas R. Smith, Robert W. Albrecht
Nuclear Technology | Volume 79 | Number 1 | October 1987 | Pages 35-50
Technical Paper | Fission Reactor | doi.org/10.13182/NT87-A16003
Articles are hosted by Taylor and Francis Online.
A recent development in passive safety devices for advanced liquid-metal reactors is the installation of manometerlike core assemblies called gas enhancement modules (GEMs). Knowledge of the liquid sodium level within the GEMs is required to monitor GEM operation. A microwave, resonant cavity level measurement technique has been laboratory tested on a scale model of a GEM assembly in a nonsodium environment. The theory behind this method is discussed, and the experimental results are shown to compare well with those predicted by theoretical calculation. The resonant cavity level detector tracked extremely well over the desired 0.1524- to 1.1176-m range of operation and provided accurate, reproducible results well within the desired ±25.4-mm actual level. When tested for vibrational stability, level errors of only 0.254 mm were observed. The effects of material differences between the experimental GEM (copper) and the actual GEM (Type 304 stainless steel) are calculated. The actual GEM will have poorer resolution but still be within ±25.4-mm actual level. Temperature effects are also calculated and produce a 10.5 kHz/°C shift in resonant frequency, which could cause the indicated level to exceed the ±25.4 mm allowed if large (∼149°C) temperature changes occur.