ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
November 2025
Latest News
Jeff Place on INPO’s strategy for industry growth
As executive vice president for industry strategy at the Institute of Nuclear Power Operations, Jeff Place leads INPO’s industry-facing work, engaging directly with chief nuclear officers.
Victor R. Prybutok, Leonard M. Gold
Nuclear Technology | Volume 78 | Number 3 | September 1987 | Pages 303-311
Nuclear Power Plant Kalkar (SNR-300) | Nuclear Safety | doi.org/10.13182/NT87-A15996
Articles are hosted by Taylor and Francis Online.
The leukemia incidence risk for a single coal plant, a single nuclear plant, and a single nuclear accident is used to compute the total industry leukemia incidence risk. In the absence of a nuclear power plant accident, the leukemia incidence risk is normally lower for a nuclear industry than for a coal industry of equivalent size. The nuclear industry risk with accidents was compared to the coal industry risk for six proposed dose response curves. Simplifying assumptions about the negligible effect of the cell-killing term and the linear nature of the linear quadratic curve allowed derivation of risk models for the assumption of both linear and quadratic dose response. These derived models, representing leukemia incidence risk bounds, are used to estimate the total industry risk comparison. Evaluation of an accident’s impact on the leukemia incidence risk comparison is done with the risk bounds and compared to the risk evaluations calculated during all six dose response curves. The overlapping plot of the number of nuclear accidents required for equivalent industry environmental risks versus the accident fraction allows the conservative function to be defined.