ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Ho Nieh nominated to the NRC
Nieh
President Trump recently nominated Ho Nieh for the role of commissioner in the Nuclear Regulatory Commission through the remainder of a term that will expire June 30, 2029.
Nieh has been the vice president of regulatory affairs at Southern Nuclear since 2021, though he is currently working as a loaned executive at the Institute of Nuclear Power Operations, where he has been for more than a year.
Nieh’s experience: Nieh started his career at the Knolls Atomic Power Laboratory, where he worked primarily as a nuclear plant engineer and contributed as a civilian instructor in the U.S. Navy’s Nuclear Power Program.
From there, he joined the NRC in 1997 as a project engineer. In more than 19 years of service at the organization, he served in a variety of key leadership roles, including division director of Reactor Projects, division director of Inspection and Regional Support, and director of the Office of Nuclear Reactor Regulation.
Takao Hayashi
Nuclear Technology | Volume 78 | Number 3 | September 1987 | Pages 216-226
Technical Paper | Fission Reactor | doi.org/10.13182/NT87-A15987
Articles are hosted by Taylor and Francis Online.
The heat transport capability of the steam generator (SG) in a high-temperature gas-cooled reactor (HTGR) is compared with SGs in other reactor types, for example, in gas-cooled reactors, pressurized water reactors, and liquid-metal fast breeder reactors (LMFBRs). The comparison is done in the form of q = Q/A (kW/m2), where Q is the reactor thermal output (in kilowatts) and A is the total heat transfer area (in square metres) of the SG. It is found that the HTGR SG has unexpectedly excellent characteristics, in spite of the low expectations of the gas-heating SG. In the area of heat transport capability, the HTGR SG is by no means inferior to (and may be superior to) light water reactors and LMFBRs. The reasons for this are explained and analyzed. The q value directly affects the design of the SG and the reactor, thus having a great impact on the cost of the plant. The greater q value of the HTGR SG lends optimistic views on the economics, at least on the HTGR SG design.