ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Alex Galperin, Meir Segev, Anatoly Goldfeld, Yonathan Karni
Nuclear Technology | Volume 70 | Number 3 | September 1985 | Pages 354-363
Technical Paper | Fission Reactor | doi.org/10.13182/NT85-A15962
Articles are hosted by Taylor and Francis Online.
The independently developed and verified computational system BGUCORE for the neutronic analysis of pressurized water reactor cores is introduced. The basic methodology adopted generates cross-section libraries for each fuel type as functions of burnup and soluble boron concentrations. These cross sections are arranged as a two-dimensional matrix of sets, each set corresponding to a particular burnup/boron pair of coordinates. The two-dimensional diffusion analysis of the reactor core utilizes the pregenerated libraries by interpolating between burnup and boron entry points. The present system is especially designed for the analysis of cores with burnable poisons. Such cores are characterized by strong heterogeneity and selfshielding effects. Detailed benchmark calculations, performed for cycle 1 of the Zion 2 power station, validate the performance of the BGUCORE system. Further development of the system, aimed at creating a comprehensive design and fuel cycle analysis tool, includes a three-dimensional representation of the core and thermohydraulic modules.