ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Yasuhide Senda, Seiji Shiroya, Masatoshi Hayashi, Keiji Kanda
Nuclear Technology | Volume 70 | Number 3 | September 1985 | Pages 318-334
Technical Paper | Fission Reactor | doi.org/10.13182/NT85-A15959
Articles are hosted by Taylor and Francis Online.
The results of analyses on the void reactivity measurements performed in the Kyoto University Critical Assembly using medium-enriched uranium fuel as well as highly enriched uranium fuel are provided. In consideration of the heterogeneity of a complex core, four-group constants were generated by SRAC, a standard thermal reactor code system for reactor design and analysis at the Japan Atomic Energy Research Institute. The eigenvalue and perturbation calculations were subsequently performed by the 2D-FEM-KUR code, which is a two-dimensional diffusion code based on the finite element method. The calculated eigenvalue keff agreed with the measured value to within 0.5% in the calculated-to-experiment ratio. The void reactivity calculated by perturbation theory approximately reproduced the experimental data including the spatial dependence. The discrepancy between the calculated and measured void reactivity was <0.05 × 10−3 Δ k / k per voided flow channel.