ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
ANS designates Armour Research Foundation Reactor as Nuclear Historic Landmark
The American Nuclear Society presented the Illinois Institute of Technology with a plaque last week to officially designate the Armour Research Foundation Reactor a Nuclear Historic Landmark, following the Society’s decision to confer the status onto the reactor in September 2024.
F. E. Coffman, J. M. Williams
Nuclear Technology | Volume 27 | Number 1 | September 1975 | Pages 174-181
Technical Paper | Education | doi.org/10.13182/NT75-A15955
Articles are hosted by Taylor and Francis Online.
With the continued depletion of fossil and uranium resources in the coming decades, the U.S. will be forced to look more toward renewable energy resources (e.g., wind, tidal, geothermal, and solar power) and toward such longer-term and nondepletable energy resources as fissile fast breeder reactors and fusion power. Several reference reactor designs have been completed for full-scale fusion power reactors that indicate that the environmental impacts from construction, operation, and eventual decommissioning of fusion reactors will be quite small. The principal environmental impact from fusion reactor operation will be from thermal discharges. Some of the safety and environmental characteristics that make fusion reactors appear attractive include an effectively infinite fuel supply at low cost, inherent incapability for a “nuclear explosion” or a “nuclear runaway,” the absence of fission products, the flexibility of selecting low neutron-cross-section structural materials so that emergency core cooling for a loss-of-coolant or other accident will not be necessary, and the absence of special nuclear materials such as 235U or 239Pu, so that diversion of nuclear weapons materials will not be possible and nuclear blackmail will not be a serious concern.