ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
CLEAN SMART bill reintroduced in Senate
Senators Ben Ray Luján (D., N.M.) and Tim Scott (R., S.C.) have reintroduced legislation aimed at leveraging the best available science and technology at U.S. national laboratories to support the cleanup of legacy nuclear waste.
The Combining Laboratory Expertise to Accelerate Novel Solutions for Minimizing Accumulated Radioactive Toxins (CLEAN SMART) Act, introduced on February 11, would authorize up to $58 million annually to develop, demonstrate, and deploy innovative technologies, targeting reduced costs and safer, faster remediation of sites from the Manhattan Project and Cold War.
Gordon L. Brownell, Brian W. Murray
Nuclear Technology | Volume 27 | Number 1 | September 1975 | Pages 60-66
Technical Paper | Education | doi.org/10.13182/NT75-A15937
Articles are hosted by Taylor and Francis Online.
Nuclear engineering has much to offer nuclear medicine, diagnostic radiology, and radiation therapy, since advances in these medical specialities require complex applications of radiation. In return, these specialties offer rewarding and stimulating careers to nuclear engineers and physicists. Nuclear engineering students are aptly qualified for research training in these areas because of their knowledge of nuclear physical principles, their engineering experience, and their desire to apply their training to socially constructive activities. Training programs should include the training of technologist’s and bachelor’s degree candidates as well as research personnel at the MS and PhD level. Although the full scope of such a program is yet to be realized at the Massachusetts Institute of Technology (MIT), several courses and seminars devoted to biomedical applications of radiation within the Department of Nuclear Engineering and a number of interdepartmental programs support the training in biomedical physics and engineering. The research training of students within these fields is challenging and complex since a working collaboration with clinicians and scientists needs to be established while still preserving an individual research program for the student. At MIT, a number of research projects involving the medical use of neutrons and radioisotopes help provide the facilities and support for thesis programs for several students. These projects include 10B neutron-capture therapy in the treatment of brain tumors, in vivo and in vitro neutron activation analysis to study metabolic bone diseases in man and animals, external localization of deep vein clots in man using radioiodinated fibrinogen, improved techniques for radiation synovectomy in the treatment of rheumatoid arthritis, and the development of ultra-short-lived radioisotopes for nuclear medicine. Based on the experience at MIT, nuclear engineering can play a vital role in training research personnel for nuclear medicine, diagnostic radiology, and radiation therapy. Any individual nuclear engineer wishing to engage in the training of students for such fields should establish a close rapport with research scientists and clinicians within a medical institution and be familiar with the medical resources available for such training.