ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
CLEAN SMART bill reintroduced in Senate
Senators Ben Ray Luján (D., N.M.) and Tim Scott (R., S.C.) have reintroduced legislation aimed at leveraging the best available science and technology at U.S. national laboratories to support the cleanup of legacy nuclear waste.
The Combining Laboratory Expertise to Accelerate Novel Solutions for Minimizing Accumulated Radioactive Toxins (CLEAN SMART) Act, introduced on February 11, would authorize up to $58 million annually to develop, demonstrate, and deploy innovative technologies, targeting reduced costs and safer, faster remediation of sites from the Manhattan Project and Cold War.
Richard T. Schneider, Karlheinz Thom
Nuclear Technology | Volume 27 | Number 1 | September 1975 | Pages 34-50
Technical Paper | Education | doi.org/10.13182/NT75-A15934
Articles are hosted by Taylor and Francis Online.
Fissioning uranium plasmas are the gaseous fuel in high-temperature cavity reactors, originally conceived for nuclear rocket propulsion in space. A predominantly pragmatic research effort, sponsored by the National Aeronautics and Space Administration, has led to the determination of the most important characteristics of the uranium nuclear fireball in gaseous core reactors. For achieving thrust at a specific impulse up to 5000 sec, the nuclear fuel must bum at a temperature in excess of 10 000 K. For criticality the uranium particle density must be not less than the molecular density of gases at standard conditions, which, in combination with the high temperature, results in a uranium plasma pressure of several hundred atmospheres. The plasma is confined by a peripherally injected propellant flow, which simultaneously intercepts the thermal radiation from the nuclear fireball and provides for an effective mechanism for heat transfer. Results of extensive research indicate that the plasma core reactor scheme is feasible. In these investigations it was assumed that because of the high pressure the fissioning plasma is optically thick. It is now believed that in gases, the energy release of fissions can lead to distributions of ionized and excited states that deviate from Maxwell-Boltzmann distributions. In that case, the fissioning plasma, or gas, exists in a nonequilibrium state and is optically thin. This condition can be exploited for the direct conversion of fission fragment energy into coherent light, that is, for the nuclear-pumped lasers. In current research, the nonequilibrium conditions of fissioning plasmas and gases are emphasized, culminating in the first successful demonstrations of experimental nuclear-pumped lasers, and in a program of gaseous fuel reactor experiments with enriched uranium hexafluoride. A variety of applications of plasma core reactors and nuclear-pumped lasers is now envisioned for benefits in space and on earth. Such benefits include advanced propulsion in space, terrestrial power generation approaching 70% efficiency, the possibility of nuclear bumup of transuranium actinides wastes, and the breeding of 233U from thorium. The research on gaseous fuel reactors and nuclear-pumped lasers predominantly requires expertise in nuclear engineering, plasma, atomic, and molecular physics, and fluid mechanics and chemistry. A multidisciplinary effort is seen as a logical approach.