ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
A wave of new U.S.-U.K. deals ahead of Trump’s state visit
President Trump will arrive in the United Kingdom this week for a state visit that promises to include the usual pomp and ceremony alongside the signing of a landmark new agreement on U.S.-U.K. nuclear collaboration.
O. J. Wallace, N. D. Cook
Nuclear Technology | Volume 23 | Number 3 | September 1974 | Pages 306-317
Technical Paper | Shielding | doi.org/10.13182/NT74-A15923
Articles are hosted by Taylor and Francis Online.
Ray tracing, the process of finding the distance through the various layers of shielding material in a reactor compartment, is a basic operation of both point-kernel and Monte Carlo computer programs. Interdependent shield-definition and ray-tracing algorithms have been developed that allow the components of a reactor to be described as individual shield units in a geometrically convenient manner and with one-, two-, or three-dimensional material variation. Rectangular, cylindrical, and spherical geometries are allowed. These shield units may be combined using a recursive embedding technique; the cells formed by the coordinate surfaces describing a shield unit may be filled either by material compositions or by cell-shaped portions of subsidiary shield units, to many levels of recursion. Ray tracing through such a shield array proceeds from coordinate surface to coordinate surface. Distances are calculated by explicit formulas in each of the three permitted geometries.