ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
CLEAN SMART bill reintroduced in Senate
Senators Ben Ray Luján (D., N.M.) and Tim Scott (R., S.C.) have reintroduced legislation aimed at leveraging the best available science and technology at U.S. national laboratories to support the cleanup of legacy nuclear waste.
The Combining Laboratory Expertise to Accelerate Novel Solutions for Minimizing Accumulated Radioactive Toxins (CLEAN SMART) Act, introduced on February 11, would authorize up to $58 million annually to develop, demonstrate, and deploy innovative technologies, targeting reduced costs and safer, faster remediation of sites from the Manhattan Project and Cold War.
John W. Wilson, G. S. Khandelwal
Nuclear Technology | Volume 23 | Number 3 | September 1974 | Pages 298-305
Technical Paper | Shielding | doi.org/10.13182/NT74-A15922
Articles are hosted by Taylor and Francis Online.
A convenient property of energetic heavy charged particles in passing through matter is that the primaries and their secondary particles remain relatively confined to the primary beam axis. As a consequence, the particle beam in matter is not strongly affected by near boundaries and the problem of calculating dose in a complicated geometric object is greatly simplified. Furthermore, the small beam width is a useful expansion parameter to develop a series that converges rapidly for most practical dose calculations. The final result relates dose at any point in an arbitrary convex region to an integral over the fluence-to-dose conversion factors for normal incidence on a semi-infinite slab. A representation of these fluence-to-dose conversion factors and all the necessary information required to calculate dose in arbitrary convex regions of tissue for proton energies below 1 GeV are found in terms of two energy-dependent parameters and known functions.