ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Stuart A. Shiels, Chris Bagnall, Steven L. Schrock
Nuclear Technology | Volume 23 | Number 3 | September 1974 | Pages 273-283
Technical Paper | Material | doi.org/10.13182/NT74-A15919
Articles are hosted by Taylor and Francis Online.
A technique that has been developed to measure the “carbon potential” of heat transport system sodium involves the equilibration of low-carbon Type 304 stainless-steel foils at a standard temperature of 704°C (1300°F). The equilibrium carbon concentration of the foil in parts per million is used as the measurement of the carbon potential of the sodium and is, in fact, a direct function of the carbon activity of the sodium. Relationships between the carbon potential, Cs, and carbon equilibrium values in Types 304 and 316 stainless steel, Ce, at temperatures, T, have been developed by experimentation. These correlations allow the surface carbon levels in system components to be predicted without knowing the transporting species or the thermodynamic relationships between the carbon in the sodium and in the steels. The data have been applied to the fast flux test facility (FFTF) primary system after making certain assumptions concerning the carbon potential of the FFTF primary sodium. The results suggest that there is little or no driving force for carburization, but that mechanical compensation will be needed for decarburization in some regions.