ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
X-energy raises $700M in latest funding round
Advanced reactor developer X-energy has announced that it has closed an oversubscribed Series D financing round of approximately $700 million. The funding proceeds are expected to be used to help continue the expansion of its supply chain and the commercial pipeline for its Xe-100 advanced small modular reactor and TRISO-X fuel, according the company.
Stuart A. Shiels, Chris Bagnall, Steven L. Schrock
Nuclear Technology | Volume 23 | Number 3 | September 1974 | Pages 273-283
Technical Paper | Material | doi.org/10.13182/NT74-A15919
Articles are hosted by Taylor and Francis Online.
A technique that has been developed to measure the “carbon potential” of heat transport system sodium involves the equilibration of low-carbon Type 304 stainless-steel foils at a standard temperature of 704°C (1300°F). The equilibrium carbon concentration of the foil in parts per million is used as the measurement of the carbon potential of the sodium and is, in fact, a direct function of the carbon activity of the sodium. Relationships between the carbon potential, Cs, and carbon equilibrium values in Types 304 and 316 stainless steel, Ce, at temperatures, T, have been developed by experimentation. These correlations allow the surface carbon levels in system components to be predicted without knowing the transporting species or the thermodynamic relationships between the carbon in the sodium and in the steels. The data have been applied to the fast flux test facility (FFTF) primary system after making certain assumptions concerning the carbon potential of the FFTF primary sodium. The results suggest that there is little or no driving force for carburization, but that mechanical compensation will be needed for decarburization in some regions.