ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
CLEAN SMART bill reintroduced in Senate
Senators Ben Ray Luján (D., N.M.) and Tim Scott (R., S.C.) have reintroduced legislation aimed at leveraging the best available science and technology at U.S. national laboratories to support the cleanup of legacy nuclear waste.
The Combining Laboratory Expertise to Accelerate Novel Solutions for Minimizing Accumulated Radioactive Toxins (CLEAN SMART) Act, introduced on February 11, would authorize up to $58 million annually to develop, demonstrate, and deploy innovative technologies, targeting reduced costs and safer, faster remediation of sites from the Manhattan Project and Cold War.
Stuart A. Shiels, Chris Bagnall, Steven L. Schrock
Nuclear Technology | Volume 23 | Number 3 | September 1974 | Pages 273-283
Technical Paper | Material | doi.org/10.13182/NT74-A15919
Articles are hosted by Taylor and Francis Online.
A technique that has been developed to measure the “carbon potential” of heat transport system sodium involves the equilibration of low-carbon Type 304 stainless-steel foils at a standard temperature of 704°C (1300°F). The equilibrium carbon concentration of the foil in parts per million is used as the measurement of the carbon potential of the sodium and is, in fact, a direct function of the carbon activity of the sodium. Relationships between the carbon potential, Cs, and carbon equilibrium values in Types 304 and 316 stainless steel, Ce, at temperatures, T, have been developed by experimentation. These correlations allow the surface carbon levels in system components to be predicted without knowing the transporting species or the thermodynamic relationships between the carbon in the sodium and in the steels. The data have been applied to the fast flux test facility (FFTF) primary system after making certain assumptions concerning the carbon potential of the FFTF primary sodium. The results suggest that there is little or no driving force for carburization, but that mechanical compensation will be needed for decarburization in some regions.