ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
CLEAN SMART bill reintroduced in Senate
Senators Ben Ray Luján (D., N.M.) and Tim Scott (R., S.C.) have reintroduced legislation aimed at leveraging the best available science and technology at U.S. national laboratories to support the cleanup of legacy nuclear waste.
The Combining Laboratory Expertise to Accelerate Novel Solutions for Minimizing Accumulated Radioactive Toxins (CLEAN SMART) Act, introduced on February 11, would authorize up to $58 million annually to develop, demonstrate, and deploy innovative technologies, targeting reduced costs and safer, faster remediation of sites from the Manhattan Project and Cold War.
W. Bixby, K. Almenas
Nuclear Technology | Volume 23 | Number 3 | September 1974 | Pages 213-221
Technical Paper | Reactor | doi.org/10.13182/NT74-A15914
Articles are hosted by Taylor and Francis Online.
Spatial neutron flux distributions have been measured in large volumes (450 liters) of several gaseous media. Measurements were made in nearly pure CO2 having a σs/σc ratio of ∼1200 and in mixtures of BF3 and CO2 with σs/σc ratios down to ∼0.02. Thus, distributions were obtained in an almost purely scattering and purely absorbing medium. The experimental results have been processed to represent the flux distribution in a semi-infinite medium of identical composition. This required removal of the leakage component, a correction made possible because the neutron mean-free-path of the measured media differed by several orders of magnitude. In effect, distributions determined almost entirely by neutron leakage and distributions determined almost entirely by neutron capture were directly measured. The experimental results were compared with transport theory calculational models by using several assumptions concerning the angular distribution of the neutron source flux. Satisfactory agreement was achieved between the experimental and analytical results when a purely collimated incident flux was assumed.