ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
Supreme Court rules against Texas in interim storage case
The Supreme Court voted 6–3 against Texas and a group of landowners today in a case involving the Nuclear Regulatory Commission’s licensing of a consolidated interim storage facility for spent nuclear fuel, reversing a decision by the 5th Circuit Court of Appeals to grant the state and landowners Fasken Land and Minerals (Fasken) standing to challenge the license.
C. Z. Serpan, Jr.
Nuclear Technology | Volume 12 | Number 1 | September 1971 | Pages 108-118
Technical Paper | Material | doi.org/10.13182/NT71-A15903
Articles are hosted by Taylor and Francis Online.
A simulated vessel wall environment was constructed that provided for measurements of steel embrittlement increase and neutron flux detector activation at two typical surveillance program locations, as well as at five additional locations, through the thickness of an 8-in.-thick steel “vessel wall.” Neutron spectra for these locations were calculated using one transport and two diffusion theory reactor physics spectrum codes plus a multiple-foil spectrum analysis code. The measured increases in steel transition temperature from the experimental locations revealed the expected gradient of highest embrittlement near the core to least embrittlement at the outer edge of the simulated vessel. Good agreement with published trends was observed. Comparisons of the code calculations versus measurements of the decrease in fluence level between locations, however, were favorable only over the shortest distances. Neutron fluences for the critically important region between fuel core and pressure vessel inner edge were significantly higher from a multiple-foil spectrum analysis code than from transport and diffusion codes when based on comparisons of spectrally adjusted iron activation measurements. This evidence of the possibility that the real fluence values in the pressure vessel wall environment are higher than those produced by common measurement techniques suggests the need for reevaluation of current surveillance data, improvements in reactor physics codes, and continuing assessments of measured versus calculated surveillance fluence data.