ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
November 2025
Latest News
Jeff Place on INPO’s strategy for industry growth
As executive vice president for industry strategy at the Institute of Nuclear Power Operations, Jeff Place leads INPO’s industry-facing work, engaging directly with chief nuclear officers.
S. Langer, H. R. Phillips, N. L. Baldwin
Nuclear Technology | Volume 12 | Number 1 | September 1971 | Pages 31-35
Technical Paper | Chemical Processing | doi.org/10.13182/NT71-A15895
Articles are hosted by Taylor and Francis Online.
An attractive recycle fuel for advanced HTGRs uses bonded fuel beds containing BISO-coated fissile and fertile particles (i.e., those having buffer and isotropic pyrolytic carbon coatings surrounding the fuel kernel). Two types of fissile material are used, 233U and 235U. The economics of the fuel cycle makes separation of these materials prior to reprocessing desirable. Laboratory-scale studies have shown that a conceptual separation process, based on the stability of (Th, U)O2 kernels in contrast to (Th, U)C2, UC2, or UO2 kernels under oxidizing conditions, is feasible on unirradiated fuel. However, damage to the oxide microspheres during irradiation is sufficient to result in fragmentation of the kernels upon removal of the pyrolytic carbon coating. Other head-end separation processes will be required to utilize bonded BISO recycle fuel in advanced HTGRs.