ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
What’s the most difficult question you’ve been asked as a maintenance instructor?
Blye Widmar
"Where are the prints?!"
This was the final question in an onslaught of verbal feedback, comments, and critiques I received from my students back in 2019. I had two years of instructor experience and was teaching a class that had been meticulously rehearsed in preparation for an accreditation visit. I knew the training material well and transferred that knowledge effectively enough for all the students to pass the class. As we wrapped up, I asked the students how they felt about my first big system-level class, and they did not hold back.
“Why was the exam from memory when we don’t work from memory in the plant?” “Why didn’t we refer to the vendor documents?” “Why didn’t we practice more on the mock-up?” And so on.
Philip T. Choong, Edward A. Mason
Nuclear Technology | Volume 19 | Number 3 | September 1973 | Pages 165-173
Technical Paper | Radioisotope | doi.org/10.13182/NT73-A15878
Articles are hosted by Taylor and Francis Online.
Thermal analysis of the temperature distribution around a spinning shell under solar radiation indicated that the resultant asymmetric temperature distribution is capable of generating sufficient thermal reradiative force to stabilize small solar probes. The steady-state normal component of this force at optimum spin is barely adequate to damp out the precession of a small solar probe. This study showed that, by coating the shell surface with a radioisotopic heat source, the useful thermal reradiation force is only increased moderately. However, the optimum spin can be shifted upward by an order of magnitude to a spin range where the attitude of the spacecraft is relatively insensitive to small disturbances. By coating the shell surface with the subliming material, the sublimation force acting on the shell is increased enormously. The numerical techniques developed to solve the inherently two-dimensional transient heat flow equation having nonlinear boundary conditions appeared to be numerically stable.