ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
November 2025
Latest News
EDF fleet update has encouraging news for U.K. nuclear industry
The EDF Group’s Nuclear Operations business, which is the majority owner of the five operating and three decommissioning nuclear power plant sites in the United Kingdom, has released its annual update on the U.K. fleet. UK Nuclear Fleet Stakeholder Update: Powering an Electric Britain includes a positive review of the previous year’s performance and news of a billion-dollar boost in the coming years to maximize output across the fleet.
Günter Jacobs
Nuclear Technology | Volume 111 | Number 3 | September 1995 | Pages 351-357
Technical Paper | A New Light Water Reactor Safety Concept Special / Nuclear Reactor Safety | doi.org/10.13182/NT95-A15865
Articles are hosted by Taylor and Francis Online.
Estimates are presented of the thermal-hydraulic load acting on a pressurized water reactor pressure vessel and its support girder after lower head failure at high pressure (17 MPa). The estimates are based on onedimensional calculations performed with the RELAP5/MOD3 transient analysis thermal-hydraulics code. The information obtained provides a force-function input for structural dynamic calculations of an increased containment. On the assumption of a global circumferential rupture of the vessel lower head, the computations show a load peak of 340 MN and a continuing load of 160 MN acting on the vessel support ring. The analysis is related to the containment concept of Eibl, Kessler, and Hennies, which is aimed at developing passive mechanisms that can safely confine core-melt consequences.