ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
ANS names 2026 Congressional Fellows
Kasper
Hayes
The American Nuclear Society has officially selected two of its members to serve as its 2026 Glenn T. Seaborg Congressional Science and Engineering Fellows. Alyssa Hayes and Benjamin Kasper will help the Society fulfill its strategic goal of enhancing nuclear policy by working in the halls of Congress, either in a congressional member’s personal office or with a committee, starting next January.
“The Congressional Fellowship program has put ANS in a unique position to provide significant technical assistance to Congress on nuclear science, energy, and technology, with great results,” said Congressional Fellowship Special Committee chair Harsh Desai, himself a former Congressional Fellow. “This once-in-a-lifetime professional development opportunity will allow them to learn the art of policymaking and potentially pursue it as part of their careers beyond the fellowship.”
Werner Scholtyssek
Nuclear Technology | Volume 111 | Number 3 | September 1995 | Pages 319-330
Technical Paper | A New Light Water Reactor Safety Concept Special / Nuclear Reactor Safety | doi.org/10.13182/NT95-A15862
Articles are hosted by Taylor and Francis Online.
The TPCONT computer code is used to study the thermal-hydraulic behavior of a pressurized water reactor containment after a core-melt accident. A commercial-sized reactor of 1500-MW(electric) power output is especially designed to withstand transient and long-term loads with purely passive means. It is shown that the decay heat can be removed with an optimized cooling system based on natural-convective air flow in the annular gap with sufficient safety margins of maximum pressure and temperature to failure values. Three gap designs, which are different in the treatment of leakage flow, are investigated. In extensive parameter studies, the thermal-hydraulic evolution in the containment is found to be rather sensitive to various system data. Therefore, precise predictions of maximum loads need accurate knowledge of the design data of the reactor under consideration and better physical data, especially concerning heat transfer and flow data in the cooling duct. Various parameters are identified that may be exploited in a careful and optimized design to effectively limit the long-term loads to acceptable values.