ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Karsten Fischer
Nuclear Technology | Volume 112 | Number 1 | October 1995 | Pages 58-62
Technical Paper | Nuclear Reactor Safety | doi.org/10.13182/NT95-A15851
Articles are hosted by Taylor and Francis Online.
The advantage of passive catalytic modules for hydrogen mitigation during core-melt accidents, as compared with active devices like forced-flow recombiners or ignitors, is given by the higher reliability of operation and the elimination of potentially violent combustion events. An important step in the qualification of a passive catalytic module system is the determination of the total required capacity and its distribution at various locations in the containment. Experiments and analytic modeling work were performed to qualify the installation of a system of catalytic modules for a large dry pressurized water reactor (PWR) containment. The operational capacity of a prototype catalytic module was determined experimentally, and a corresponding model correlation was developed and integrated into the GOTHIC containment code. This modified code was validated against experimental data. As an application, predictions of the effects, resulting from backfitting a large, dry PWR containment with 50 catalytic modules, were done using the modified code. The catalytic modules keep the hydrogen concentrations below a level of 10% where violent deflagrations could be expected. Local higher concentrations near the release location are inert due to associated low oxygen and high steam concentrations. A proper distribution of the modules in the containment guarantees full mixing of the atmosphere due to natural convective currents.