ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Young Members Group
The Young Members Group works to encourage and enable all young professional members to be actively involved in the efforts and endeavors of the Society at all levels (Professional Divisions, ANS Governance, Local Sections, etc.) as they transition from the role of a student to the role of a professional. It sponsors non-technical workshops and meetings that provide professional development and networking opportunities for young professionals, collaborates with other Divisions and Groups in developing technical and non-technical content for topical and national meetings, encourages its members to participate in the activities of the Groups and Divisions that are closely related to their professional interests as well as in their local sections, introduces young members to the rules and governance structure of the Society, and nominates young professionals for awards and leadership opportunities available to members.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Rob D. Radulovich, William E. Vesely, Tunc Aldemir
Nuclear Technology | Volume 112 | Number 1 | October 1995 | Pages 21-41
Technical Paper | Nuclear Reactor Safety | doi.org/10.13182/NT95-A15849
Articles are hosted by Taylor and Francis Online.
In the nuclear industry, aging effects have been traditionally incorporated into probabilistic risk assessment studies by using a constant (static) unavailability (qs) averaged over time. However, recent work shows that because of aging, substantial deviations may occur in time-dependent nuclear plant component unavailability from that predicted by static models well within the plant lifetime. A methodology based on the standard extension of the classic renewal equation when repair is explicitly considered is used to investigate (a) the trends in the effects of aging on time-dependent component unavailability as a function of changing first failure density (FFD) and test parameters and (b) the circumstances for which static approximations may be inadequate to describe these effects. The investigation uses several point- and time-averaged unavailability measures based on time-dependent unavailability, such as before-test unavailability (BTU), average-interval unavailability (AIU) and year-average unavailability (YAU), and is restricted to periodically tested components whose FFDs satisfy the Weibull distribution with aging threshold. The results show that while point measures (e.g., BTU) can substantially differ from static unavailability and while all measures are sensitive to changes in the Weibull shape parameter b, aging threshold time t, and time between tests T, the differences between the time-averaged measures used (e.g., AIU, YAU) and the static unavailability were only found to be relatively significant for one case among more than 100 combinations of b, T, and T that were investigated. The differences are a factor of <2 for all other cases, which is within the uncertainty margin on the data used in the study. The results also show that qs may be an adequate unavailability measure for low values of b (i.e., b<2) and high values of T (i.e., T> 18 months) and may describe the late effects of aging on component unavailability irrespective of band T (i.e., beyond 25 yr of component age for the data under consideration).