ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
DOE-NE opens comments on new fuel consortium agreements
The Department of Energy’s Office of Nuclear Energy is requesting comments on a draft voluntary agreement for the Nuclear Fuel Cycle Defense Production Act (DPA) Consortium, with a short deadline of November 24 for comments.
Notice of the request for comments, along with the text of the draft voluntary agreement, was published in the November 17 Federal Register.
Mihalis Lazaridis, Joaquim Areia Capitão, Yannis Drossinos
Nuclear Technology | Volume 115 | Number 3 | September 1996 | Pages 359-367
Technical Note | Nuclear Reactor Safety | doi.org/10.13182/NT96-A15845
Articles are hosted by Taylor and Francis Online.
The RAFT computer code for aerosol formation and transport was modified to include boron species in its chemical database. The modification was necessary to calculate fission product transport and deposition in the FAL-17 and ISP-34 Falcon tests, where boric acid was injected. The experimental results suggest that the transport of cesium is modified in the presence of boron. The results obtained with the modified RAFT code are presented; they show good agreement with experimental results for cesium and partial agreement for boron deposition in the Falcon silica tube. The new version of the RAFT code predicts the same behavior for iodine deposition as the previous version, where boron species were not included.