ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
X-energy raises $700M in latest funding round
Advanced reactor developer X-energy has announced that it has closed an oversubscribed Series D financing round of approximately $700 million. The funding proceeds are expected to be used to help continue the expansion of its supply chain and the commercial pipeline for its Xe-100 advanced small modular reactor and TRISO-X fuel, according the company.
Hungyuan B. Liu
Nuclear Technology | Volume 115 | Number 3 | September 1996 | Pages 311-319
Technical Paper | Radiation Biology and Medicine | doi.org/10.13182/NT96-A15841
Articles are hosted by Taylor and Francis Online.
The broad beam facility (BBF) at the Brookhaven Medical Research Reactor (BMRR) can provide a thermal neutron beam with flux intensity and quality comparable to the beam currently used for research on neutron capture therapy using cell-culture and small-animal irradiations. Monte Carlo computations were made, first, to compare with the dosimetric measurements at the existing BBF and, second, to calculate the neutron and gamma fluxes and doses expected at the proposed BBF. Multiple cell cultures or small animals could be irradiated simultaneously at the so-modified BBF under conditions similar to or better than those individual animals irradiated at the existing thermal neutron irradiation facility (TNIF) of the BMRR. The flux intensity of the collimated thermal neutron beam at the proposed BBF would be 1.7 × 1010 n/cm2·s at 3-MW reactor power, the same as at the TNIF. However, the proposed collimated beam would have much lower gamma (0.89 × 10−11 cGy·cm2/nth) and fast neutron (0.58 × 10−11 cGy·cm2/nth) contaminations, 64 and 18% of those at the TNIF, respectively. The feasibility of remodeling the facility is discussed.