ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
2021 Student Conference
April 8–10, 2021
Virtual Meeting
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2021
Jul 2020
Latest Journal Issues
Nuclear Science and Engineering
March 2021
Nuclear Technology
February 2021
Fusion Science and Technology
January 2021
Latest News
NC State celebrates 70 years of nuclear engineering education
An early picture of the research reactor building on the North Carolina State University campus. The Department of Nuclear Engineering is celebrating the 70th anniversary of its nuclear engineering curriculum in 2020–2021. Photo: North Carolina State University
The Department of Nuclear Engineering at North Carolina State University has spent the 2020–2021 academic year celebrating the 70th anniversary of its becoming the first U.S. university to establish a nuclear engineering curriculum. It started in 1950, when Clifford Beck, then of Oak Ridge, Tenn., obtained support from NC State’s dean of engineering, Harold Lampe, to build the nation’s first university nuclear reactor and, in conjunction, establish an educational curriculum dedicated to nuclear engineering.
The department, host to the 2021 ANS Virtual Student Conference, scheduled for April 8–10, now features 23 tenure/tenure-track faculty and three research faculty members. “What a journey for the first nuclear engineering curriculum in the nation,” said Kostadin Ivanov, professor and department head.
Arpita Datta, N. Sivaraman, T. G. Srinivasan, P. R. Vasudeva Rao
Nuclear Technology | Volume 182 | Number 1 | April 2013 | Pages 84-97
Technical Paper | Reprocessing | dx.doi.org/10.13182/NT13-A15829
Articles are hosted by Taylor and Francis Online.
A single-stage dual-column chromatographic technique has been developed in this study for separation and determination of lanthanides in a uranium matrix. A 5-cm-length reversed-phase column coated with tri-n-octylphosphine oxide (TOPO) was connected in series to a 10-cm-length reversed-phase monolithic column (dynamically modified into a cation exchange column) to accomplish individual isolation of lanthanides from the uranium matrix. The proposed technique eliminates the step of uranium matrix removal for the determination of lanthanides. Samples with a lanthanide-to-uranium ratio (1 part lanthanide to 105 parts uranium) were directly injected into the dual column for the quantitative determination of lanthanides without uranium matrix removal. In some studies, samples of lanthanides in the uranium matrix could be injected as much as 45 times consecutively into a high-performance liquid chromatography system for determination of lanthanides without any uranium elution. The retention behavior of Pu(IV), Pu(III), Am(III), and fission products was also investigated on the TOPO-coated support. The single-stage dual-column chromatographic technique was demonstrated for the determination of fission products such as La and Nd in the dissolver solution of pressurized heavy water reactor spent fuel for the measurement of atom percent fission burnup. The technique can also be employed to estimate lanthanide impurities in samples of UO2 (1 part lanthanide to 106 parts uranium) without removal of the uranium matrix.