ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Modernizing I&C for operations and maintenance, one phase at a time
The two reactors at Dominion Energy’s Surry plant are among the oldest in the U.S. nuclear fleet. Yet when the plant celebrated its 50th anniversary in 2023, staff could raise a toast to the future. Surry was one of the first plants to file a subsequent license renewal (SLR) application, and in May 2021, it became official: the plant was licensed to operate for a full 80 years, extending its reactors’ lifespans into 2052 and 2053.
Arpita Datta, N. Sivaraman, T. G. Srinivasan, P. R. Vasudeva Rao
Nuclear Technology | Volume 182 | Number 1 | April 2013 | Pages 84-97
Technical Paper | Reprocessing | doi.org/10.13182/NT13-A15829
Articles are hosted by Taylor and Francis Online.
A single-stage dual-column chromatographic technique has been developed in this study for separation and determination of lanthanides in a uranium matrix. A 5-cm-length reversed-phase column coated with tri-n-octylphosphine oxide (TOPO) was connected in series to a 10-cm-length reversed-phase monolithic column (dynamically modified into a cation exchange column) to accomplish individual isolation of lanthanides from the uranium matrix. The proposed technique eliminates the step of uranium matrix removal for the determination of lanthanides. Samples with a lanthanide-to-uranium ratio (1 part lanthanide to 105 parts uranium) were directly injected into the dual column for the quantitative determination of lanthanides without uranium matrix removal. In some studies, samples of lanthanides in the uranium matrix could be injected as much as 45 times consecutively into a high-performance liquid chromatography system for determination of lanthanides without any uranium elution. The retention behavior of Pu(IV), Pu(III), Am(III), and fission products was also investigated on the TOPO-coated support. The single-stage dual-column chromatographic technique was demonstrated for the determination of fission products such as La and Nd in the dissolver solution of pressurized heavy water reactor spent fuel for the measurement of atom percent fission burnup. The technique can also be employed to estimate lanthanide impurities in samples of UO2 (1 part lanthanide to 106 parts uranium) without removal of the uranium matrix.