ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
The legacy of Windscale Pile No. 1
The core of Pile No. 1 at Windscale caught fire in the fall of 1957. The incident, rated a level 5, “Accident with Wider Consequences,” by the International Nuclear and Radiological Event Scale (INES), has since inspired nuclear safety culture, risk assessment, accident modeling, and emergency preparedness. Windscale also helped show how important communication and transparency are to gaining trust and public support.
Arpita Datta, N. Sivaraman, T. G. Srinivasan, P. R. Vasudeva Rao
Nuclear Technology | Volume 182 | Number 1 | April 2013 | Pages 84-97
Technical Paper | Reprocessing | doi.org/10.13182/NT13-A15829
Articles are hosted by Taylor and Francis Online.
A single-stage dual-column chromatographic technique has been developed in this study for separation and determination of lanthanides in a uranium matrix. A 5-cm-length reversed-phase column coated with tri-n-octylphosphine oxide (TOPO) was connected in series to a 10-cm-length reversed-phase monolithic column (dynamically modified into a cation exchange column) to accomplish individual isolation of lanthanides from the uranium matrix. The proposed technique eliminates the step of uranium matrix removal for the determination of lanthanides. Samples with a lanthanide-to-uranium ratio (1 part lanthanide to 105 parts uranium) were directly injected into the dual column for the quantitative determination of lanthanides without uranium matrix removal. In some studies, samples of lanthanides in the uranium matrix could be injected as much as 45 times consecutively into a high-performance liquid chromatography system for determination of lanthanides without any uranium elution. The retention behavior of Pu(IV), Pu(III), Am(III), and fission products was also investigated on the TOPO-coated support. The single-stage dual-column chromatographic technique was demonstrated for the determination of fission products such as La and Nd in the dissolver solution of pressurized heavy water reactor spent fuel for the measurement of atom percent fission burnup. The technique can also be employed to estimate lanthanide impurities in samples of UO2 (1 part lanthanide to 106 parts uranium) without removal of the uranium matrix.