ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
INL’s new innovation incubator could link start-ups with an industry sponsor
Idaho National Laboratory is looking for a sponsor to invest $5 million–$10 million in a privately funded innovation incubator to support seed-stage start-ups working in nuclear energy, integrated energy systems, cybersecurity, or advanced materials. For their investment, the sponsor gets access to what INL calls “a turnkey source of cutting-edge American innovation.” Not only are technologies supported by the program “substantially de-risked” by going through technical review and development at a national laboratory, but the arrangement “adds credibility, goodwill, and visibility to the private sector sponsor’s investments,” according to INL.
Michelangelo Durazzo, Ricardo Mendes Leal Neto, Adonis Marcelo Saliba-Silva, Elita Fontenele Urano de Carvalho, Humberto Gracher Riella
Nuclear Technology | Volume 182 | Number 1 | April 2013 | Pages 57-62
Technical Paper | Fuel Cycle and Management/Miscellaneous | doi.org/10.13182/NT13-A15826
Articles are hosted by Taylor and Francis Online.
Gadolinium has been added to nuclear fuel to enable longer fuel cycles. UO2-Gd2O3 mixed fuel shows bad sintering behavior, which is hindered at temperatures of [approximately]1200°C. The mechanism that explains this unusual sintering behavior is not yet fully understood. The formation of Gd-rich phases with low diffusivity or pore formation during sintering have both been suggested as possible causes. Experimental data published in the literature appear not to support phase formation; however, the formation of large closed pores in Gd2O3-rich regions of the fuel has been reported. Pore formation could be developed during the Gd2O3 C[right arrow]B phase transition, which is followed by volume reduction. Our study investigated this hypothesis. The results showed that the mechanism proposed does not explain the UO2-Gd2O3 sintering behavior.