ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Christmas Light
’Twas the night before Christmas when all through the house
No electrons were flowing through even my mouse.
All devices were plugged by the chimney with care
With the hope that St. Nikola Tesla would share.
Seung-Hyuk Lee, Hyun-Koon Kim, Sang-Ryeol Park, Soon-Heung Chang
Nuclear Technology | Volume 94 | Number 3 | June 1991 | Pages 407-415
Technical Paper | Heat Transfer and Fluid Flow | doi.org/10.13182/NT91-A15818
Articles are hosted by Taylor and Francis Online.
A statistical core thermal design methodology for generating the limit departure from nucleate boiling ratio (DNBR) is proposed and used in assessing the best-estimate thermal margin in a reactor core. This new methodology adopts a modified Latin hypercube sampling method. In this method, the independencies of the input variables are verified through a correlation coefficient test for statistical treatment of their uncertainties. Next, the DNBR response distribution is determined through a goodness-of-fit test. Finally, a limit DNBR with a one-sided 95% probability and a confidence level of 0.95 is estimated. This methodology is simpler than the conventional statistical method using the response surface and Monte Carlo simulation technique, but it maintains the same level of confidence in the limit DNBR result. This methodology is applied to the Yonggwang Nuclear Units 3 and 4 reactor cores using preliminary design data. From this study, it is deduced that the proposed methodology is useful for design application.