ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
NN Asks: What did you learn from ANS’s Nuclear 101?
Mike Harkin
When ANS first announced its new Nuclear 101 certificate course, I was excited. This felt like a course tailor-made for me, a transplant into the commercial nuclear world. I enrolled for the inaugural session held in November 2024, knowing it was going to be hard (this is nuclear power, of course)—but I had been working on ramping up my knowledge base for the past year, through both my employer and at a local college.
The course was a fast-and-furious roller-coaster ride through all the key components of the nuclear power industry, in one highly challenging week. In fact, the challenges the students experienced caught even the instructors by surprise. Thankfully, the shared intellectual stretch we students all felt helped us band together to push through to the end.
We were all impressed with the quality of the instructors, who are some of the top experts in the field. We appreciated not only their knowledge base but their support whenever someone struggled to understand a concept.
Florent Heidet, Ehud Greenspan
Nuclear Technology | Volume 181 | Number 3 | March 2013 | Pages 381-407
Technical Papers | Fission Reactors | doi.org/10.13182/NT13-A15800
Articles are hosted by Taylor and Francis Online.
A sodium-cooled fast reactor breed-and-burn (B&B) core and fuel cycle concept are proposed to achieve uranium utilization in the vicinity of 50% without separation of most of the fission products from the actinides. This core is to be fueled with depleted uranium (DU) with the exception of the initial core loading that uses fissile fuel to achieve initial criticality. When the cladding reaches its radiation damage limit, the melt-refining process is used to recondition the fuel, and then the fuel is reloaded into the core. This fuel reconditioning continues until the fuel reaches the neutronically maximum attainable burnup. When a fuel assembly is discharged at its maximum attainable burnup, it is replaced with a fresh DU assembly.The maximum burnup attainable in a large 3000-MW(thermal) B&B core is found to be 57% fissions per initial metal atoms (FIMA). The discharged fuel characteristics such as the inventory of actinides, radiotoxicity, and decay heat are one order of magnitude smaller, per unit of energy generated, than those of a light water reactor operating with the once-through fuel cycle.It is also found that the minimum burnup required for sustaining the B&B mode of operation is 19.4% FIMA. The fuel discharged at this burnup has sufficient excess reactivity for establishing initial criticality in a new large B&B core. The theoretical minimum doubling time for new core spawning is estimated to be [approximately]10 effective full-power years; there is no need for any external fissile material supply beyond that required for the initial "mother" reactor.Successful development and deployment of the B&B core along with fuel reconditioning could possibly provide up to 3000 yr worth of the current global nuclear electricity generation by using the DU stockpiles already accumulated worldwide. However, a number of important feasibility issues are yet to be resolved.