ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
NRC cuts fees by 50 percent for advanced reactor applicants
The Nuclear Regulatory Commission has announced it has amended regulations for the licensing, inspection, special projects, and annual fees it will charge applicants and licensees for fiscal year 2025.
Florent Heidet, Ehud Greenspan
Nuclear Technology | Volume 181 | Number 3 | March 2013 | Pages 381-407
Technical Papers | Fission Reactors | doi.org/10.13182/NT13-A15800
Articles are hosted by Taylor and Francis Online.
A sodium-cooled fast reactor breed-and-burn (B&B) core and fuel cycle concept are proposed to achieve uranium utilization in the vicinity of 50% without separation of most of the fission products from the actinides. This core is to be fueled with depleted uranium (DU) with the exception of the initial core loading that uses fissile fuel to achieve initial criticality. When the cladding reaches its radiation damage limit, the melt-refining process is used to recondition the fuel, and then the fuel is reloaded into the core. This fuel reconditioning continues until the fuel reaches the neutronically maximum attainable burnup. When a fuel assembly is discharged at its maximum attainable burnup, it is replaced with a fresh DU assembly.The maximum burnup attainable in a large 3000-MW(thermal) B&B core is found to be 57% fissions per initial metal atoms (FIMA). The discharged fuel characteristics such as the inventory of actinides, radiotoxicity, and decay heat are one order of magnitude smaller, per unit of energy generated, than those of a light water reactor operating with the once-through fuel cycle.It is also found that the minimum burnup required for sustaining the B&B mode of operation is 19.4% FIMA. The fuel discharged at this burnup has sufficient excess reactivity for establishing initial criticality in a new large B&B core. The theoretical minimum doubling time for new core spawning is estimated to be [approximately]10 effective full-power years; there is no need for any external fissile material supply beyond that required for the initial "mother" reactor.Successful development and deployment of the B&B core along with fuel reconditioning could possibly provide up to 3000 yr worth of the current global nuclear electricity generation by using the DU stockpiles already accumulated worldwide. However, a number of important feasibility issues are yet to be resolved.