ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
2023 ANS Annual Meeting
June 11–14, 2023
Indianapolis, IN|Marriott Indianapolis Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2023
Jan 2023
Latest Journal Issues
Nuclear Science and Engineering
June 2023
Nuclear Technology
Fusion Science and Technology
July 2023
Latest News
The Civil Nuclear Credit Program: An overview
Officially established on November 15, 2021, with the signing of the $1.2 trillion Infrastructure Investment and Jobs Act—aka the Bipartisan Infrastructure Law, or BIL—the Department of Energy’s Civil Nuclear Credit Program was designed to give owners/operators of commercial U.S. reactors the opportunity to apply for certification and competitively bid on credits to help support the continued operation of economically troubled units. Finally, the federal government, and not just certain farsighted state governments, would recognize nuclear energy for its important grid reliability and decarbonization attributes.
Adrienne M. Lafleur, William S. Charlton, Howard O. Menlove, Martyn T. Swinhoe, Alain R. Lebrun
Nuclear Technology | Volume 181 | Number 2 | February 2013 | Pages 354-370
Technical Paper | Radiation Measurements and General Instrumentation | doi.org/10.13182/NT13-A15790
Articles are hosted by Taylor and Francis Online.
A new nondestructive assay technique called self-interrogation neutron resonance densitometry (SINRD) is currently being developed at Los Alamos National Laboratory to improve existing nuclear safeguards and material accountability measurements for light water reactor fuel assemblies. The viability of using SINRD to improve the detection of possible diversion scenarios for pressurized water reactor 17 × 17 spent low-enriched uranium (LEU) and mixed oxide (MOX) fuel assemblies was investigated via Monte Carlo N-Particle eXtended transport code (MCNPX) simulations. The following capabilities were assessed: (a) verification of the burnup of a spent fuel assembly, (b) ability to distinguish fresh and one-cycle spent MOX fuel from three- and four-cycle spent LEU fuel, and (c) sensitivity and penetrability to the removal of fuel pins. SINRD utilizes 244Cm spontaneous-fission neutrons to self-interrogate the spent fuel pins. The amount of resonance absorption of these neutrons in the fuel can be quantified using a set of fission chambers (FCs) placed adjacent to the assembly. The sensitivity of SINRD is based on using the same fissile materials in the FCs as are present in the fuel because the effect of resonance absorption lines in the transmitted flux is amplified by the corresponding (n,f) reaction peaks in the FC. SINRD requires calibration with a reference assembly of similar geometry in a similar measurement configuration with the same surrounding moderator as the spent fuel assemblies. However, this densitometry method uses ratios of different detectors so that several systematic errors related to calibration and positioning cancel in the ratios.