ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
IAEA conducts safety review of South Africa’s SAFARI-1
A team of nuclear safety experts with the International Atomic Energy Agency completed a five-day safety review of the SAFARI-1 reactor in Pelindaba, South Africa, focusing on aging management and continued safe operation of the 61-year-old 20-MW research reactor.
The IAEA team found that the SAFARI-1’s management and technical staff had a strong commitment to and involvement with the assessment but recommended that formal programs be established to address the aging reactor’s equipment.
Robert J. Schott, Charles L. Weaver, Mark A. Prelas, Kyuhak Oh, Jason B. Rothenberger, R. V. Tompson, Denis A. Wisniewski
Nuclear Technology | Volume 181 | Number 2 | February 2013 | Pages 349-353
Technical Paper | Radioisotopes | doi.org/10.13182/NT13-A15789
Articles are hosted by Taylor and Francis Online.
The use of a photon intermediate direct energy conversion (PIDEC) process to develop a proof of concept of a long-lived and efficient nuclear battery powered by a radioactive beta source is discussed. Fundamentally, PIDEC is a means of matching the scale length of the range of radiation to the scale length of the transducer. The device uses a photovoltaic cell and excimer gas-based photon source. In this work, argon was used to produce the excimer photon source (argon excimer at 129 nm) with a pressure range from 7 × 10-3 to 1.4 × 107 Pa (10-6 to 2100 psig). The beta source used in this study was a 90Sr source that has a daughter, 90Y, that then decays to stable 90Zr. Intermediate shielding from lead and an argon gas plenum were used to prevent damage to the photovoltaic cell. This battery demonstrated power variations with gas pressure as expected, and no radiation damage to the photovoltaic cell was observed over a period in excess of 150 h. Such a long exposure period demonstrates the desired tolerance of the device to the direct radiation damage that would otherwise be sustained in normal semiconductor-based energy conversion systems.