ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
2021 ANS Virtual Annual Meeting
June 14–16, 2021
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2021
Jan 2021
Latest Journal Issues
Nuclear Science and Engineering
May 2021
Nuclear Technology
April 2021
Fusion Science and Technology
February 2021
Latest News
Consultant recommends subsidies for Exelon plants
A research and consulting firm hired by Illinois governor J. B. Pritzker’s administration to scrutinize the financial fitness of Exelon’s Byron and Dresden nuclear plants approves of limited state subsidies for the facilities, according to a redacted version of the firm’s report made available yesterday.
Catharina Nästrén, Asunción Fernandéz-Carretero, Joseph Somers
Nuclear Technology | Volume 181 | Number 2 | February 2013 | Pages 331-336
Technical Paper | Fuel Cycle and Management | dx.doi.org/10.13182/NT13-A15787
Articles are hosted by Taylor and Francis Online.
Use of composites of actinide oxides dispersed in a Mo metal matrix is a recent inert matrix fuel concept for the transmutation of Pu and the minor actinides (Np, Am, and Cm). These elements are present in spent nuclear fuel, and their long-term radiotoxicity can be minimized if they are recovered from the fuel and irradiated in dedicated targets in nuclear reactors. The synthesis of such highly radioactive fuels is not simple, and given the high radiotoxicity of Am, the safety of operation of such a process must be examined for production of small-scale analytical batches. Infiltration of americium nitrate into porous PuO2 beads has potential safety bonuses. The beads are produced by a sol-gel external gelation route. Tests have been developed here with CeO2, as a surrogate for PuO2, and have been optimized for both bead production and pelletization of a blend of calcined beads and Mo powder. Addition of carbon to the sol-gel feed solution and its subsequent pyrolysis provides a means to optimize the porosity of the oxide beads. The carbon acts as a pore former. The highest-quality product meeting typical fuel specifications required addition of 20 g/l carbon in the sol-gel feed and calcination of the CeO2 beads at 800°C. Subsequent Mo cermet composites with 20 or 40 vol% of ceramic reached densities in excess of 90% of the theoretical value as is required for nuclear reactor applications. Finally, the step from CeO2 surrogates to (Pu, Am)O2 targets has been made and pellets of excellent quality produced.