ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Education and training to support Canadian nuclear workforce development
Along with several other nations, Canada has committed to net-zero emissions by 2050. Part of this plan is tripling nuclear generating capacity. As of 2025, the country has four operating nuclear generating stations with a total of 17 reactors, 16 of which are in the province of Ontario. The Independent Electricity System Operator has recommended that an additional 17,800 MWe of nuclear power be added to Ontario’s grid.
Florent Heidet, Ehud Greenspan
Nuclear Technology | Volume 181 | Number 2 | February 2013 | Pages 251-273
Technical Paper | Fission Reactors/Fuel Cycle and Management | doi.org/10.13182/NT13-A15782
Articles are hosted by Taylor and Francis Online.
A preliminary feasibility study is performed for a sodium-cooled breed-and-burn (B&B) fast reactor core for achieving high uranium utilization without solid fission product separation that could fit within a reactor vessel of the dimensions of SuperPRISM (S-PRISM). This 1000-MW(thermal) B&B core is to be fueled with depleted uranium with the exception of the fissile loading required for achieving initial criticality. When the fuel reaches its radiation damage limit, it is reconditioned using the melt-refining process and reloaded into the core until it runs out of reactivity.It is found that the maximum burnup at which the S-PRISM-sized B&B core can be designed to discharge its fuel is 43% fissions per initial metal atom. The corresponding uranium utilization is nearly 90 times higher than that of a light water reactor. The achievable burnup strongly depends on the fuel volume fraction but is almost insensitive to the core power density, fuel-reconditioning frequency, and duration of the fuel-reconditioning process.