ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
2021 Student Conference
April 8–10, 2021
Virtual Meeting
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2021
Jul 2020
Latest Journal Issues
Nuclear Science and Engineering
March 2021
Nuclear Technology
February 2021
Fusion Science and Technology
January 2021
Latest News
Don't forget to vote!
The 2021 ANS Election is open. This is your chance to help shape the future of your Society.
All ANS members were sent an email on February 22 with a unique username and password from Survey & Ballot Systems (SBS). If you did not receive this email or you do not have your election login information, please go to directvote.net/ANS, enter your email address that is on file with ANS, and your election login information will be emailed to you.
D. Pun-Quach, P. Sermer, F. M. Hoppe, O. Nainer, B. Phan
Nuclear Technology | Volume 181 | Number 1 | January 2013 | Pages 170-183
Technical Paper | Special Issue on the 14th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-14) / Reactor Safety | dx.doi.org/10.13182/NT13-A15765
Articles are hosted by Taylor and Francis Online.
This paper presents a best estimate plus uncertainty (BEPU) methodology applied to dryout, or critical channel power (CCP), modeling based on a Monte Carlo approach. This method involves the identification of the sources of uncertainty and the development of error models for the characterization and separation of epistemic and aleatory uncertainties associated with the CCP parameter. Furthermore, the proposed method facilitates the use of actual operational data leading to improvements over traditional methods, such as sensitivity analysis, which assume parametric models that may not accurately capture the possible complex statistical structures in the system input and responses.